
AFRL MSRC C Shell (csh)
Programming Tutorial

Topic List

Introduction . 1
Basic shell script . 2
Variables . 3
Useful variable values . 6
Constructing strings . 7
Logical expressions and file inquiry . 8
File inquiry and logical operators . 8
Making choices (if and switch) . 10
Positional parameters . 16
Looping: foreach, while . 18
eval commmand . 22
Doing math . 23
Built-in math . 24
continue, break . 25
find command . 26
Useful find options . 26
In-line input redirection or here documents 27
source command . 28
exit command . 29
Stream manipulation . 29

AFRL MSRC C Shell (csh) Programming Tutorial i

[This is intended to be a tutorial on scripting in the C shell csh. The interested reader is
referred to Anderson, The Unix C Shell Field Guide, and similar texts.]

C Shell (csh) Programming

Note: ‘t’ denotes a space (‘ ’) character.

C shell has similar structures to the C programming language.

The C shell csh and its derivatives are popular shells that have syntax similar to the C
programming language.

AFRL MSRC C Shell (csh) Programming Tutorial 1

The following are two examples of a simple shell script. As the reader can see, this is a
series of commands to change to the user’s $HOME directory, create a subdirectory, and
print out the line from the env command containing the string PATH; the reader could
execute these same series of commands from the command line.

Basic shell script

#!/bin/csh

cd $HOME
mkdir foo
env | grep PATH

or

#!/bin/csh

cd $HOME ; mkdir foo
env | \

grep PATH

Note: commands can be separated by a newline character or
‘;’. ‘\’ is used for line continuations.

The first line in the file “#!/bin/csh” tells the shell what interpreter to use with the
script as input. Due to space considerations, the “#!/bin/csh” line will be omitted in the
examples as they are code snippets. The second example demonstrates the use of “;” to
combine commands on the same line and “\” to split command lines on multiple lines.

Any text following a “#” character is treated as a comment.

These scripts must have the execute-bit enabled (chmod u+x filename) to execute these
scripts as commands.

AFRL MSRC C Shell (csh) Programming Tutorial 2

The utilities expr and find will be used in the examples. These utilities have individual
man pages.

The following are a few utility commands that will be used in
subsequent examples.

expr – integer arithmetic operations
find – locates files with specific attributes

As with other programming languages, variables provide a means of storing and recalling
data via a naming scheme.

Variables

name must begin with a letter or ‘ ’ character, followed by zero
or more letters, numbers, and ‘ ’ characters.

Assignment: set name = value
set name[n] = value
set name = (value-1 . . . value-N)

Environment variable: setenv name value

Value: $name
$name[index]

Replaces with value: $name, “$name”, `$name`
No change: \$name, ´$name´

The three variations of the set command assign to a shell variable, the nth element of a list
variable, and a list variable respectively. These variables are only defined in the current
shell process.

setenv assigns values to environment variables, which are passed to subshells or child shells.

The value of a shell or environment variable is referenced by prepending a “$” to the
name. Note that using double quotes (") or gravé quotes (`) expands to the variable’s
value whereas escaping the “$” or using single quotes (´) does not. Due to variable
modifiers (not discussed), enclosing the name of the variable in braces ({}) avoids accidental
interpretations when combining variable values and “:”’s.

AFRL MSRC C Shell (csh) Programming Tutorial 3

The example illustrates the various methods of assigning and using shell variables, with
the output following. The pwd command outputs the full path of the current directory.
The echo command prints its arguments to standard output. The env command prints
out the names and values of the environment variables in the current shell process. The
grep command prints out occurrences of its first argument in its input (standard input in
the example).

Example: comparing shell and environment variables

pwd

set foo = ”Value of foo”
setenv AKIRA ”pwd”

echo $foo “$AKIRA”
echo \$foo ’$AKIRA’
echo ‘$AKIRA‘

env | grep AKIRA
env | grep foo

Result:

/home/user
Value of foo pwd
$foo $AKIRA
/home/user
AKIRA=pwd
<blank line>

AFRL MSRC C Shell (csh) Programming Tutorial 4

The script: 1) outputs the full path of the current directory, 2) assigns values to the shell
variables foo and AKIRA, 3) makes AKIRA an environment variable which is available
to child processes, 4) outputs the various forms of the two shell variables, and 5) outputs
matches of the two shell variables in the enviroment variable output.

The first line of the output is the full path of the current directory.

The second line of the output is the concatenation of the values of the two shell variables.
This shows that both the unquoted form and quoting with double quotes ("") expands to
the value of the shell variable.

The third line of output are the variable names preceded by a ‘$’ character. Escaping
(preceding by ‘\’) the ‘$’ or enclosing in single quotes (´´) prevents expansion to the value
of the shell variable. This form is useful if ‘$’ does not precede a valid shell variable name,
e.g., currency expressions. Delayed expansion is also useful when the shell variable has no
value in the current shell process (e.g., writing out a shell script, executing a command on
a remote system).

The fourth line of output is the full path of the current directory. The gravé quotes
(``) execute the value of the shell variable as a command in a subshell. Here, $AKIRA
expands to pwd, and the output of the command is stored as a string.

The last two lines of output (the last line is blank) show that AKIRA was defined as an
environment variable whereas foo was not.

AFRL MSRC C Shell (csh) Programming Tutorial 5

The following is a list of common shell variables. Some of these will be used in later
examples.

Useful variable values

$PATH colon-separated list of directories

in which to search for commands

$LD LIBRARY PATH colon-separated list of directories

in which to search for shared objects

$MANPATH colon-separated list of directories

in which to search for man pages

$HOME user’s home directory

$USER login name

$PWD full path of current directory

$status exit status value of last command executed

$$ process id (PID) of the current process

$0 name of called script

$1–$9 up to the first nine positional parameters

$argv[1]–$argv[9]

$#argv count of positional parameters

(can be larger than nine)

$* string of all the positional parameters

Note that argv is a variable list. The range of indices is 1 to $#argv.

AFRL MSRC C Shell (csh) Programming Tutorial 6

Constructing strings

Assume that the value $foo is the string “JIRO,” the value
$bar is the string “mohmoh-rehnjah,” and the value $null is
the empty string (“”) in the following examples.

Expression: $foo5
Equivalent: “” [undefined variable]

Expression: ${foo}5
Equivalent: “JIRO5”

Expression: x$bar
Equivalent: “xmohmoh-renjah”

Expression: ´x$null´
Equivalent: “x$null” [no expansion]

Expression: $bar´ has explosive jewelry.´
“$bar has explosive jewelry.”

Equivalent: “mohmoh-renjah has explosive jewelry.”

Expression: `echo ${foo}“5$null”`
Equivalent: “JIRO5” [result of echo evaluation]

These examples demonstrate constructions of strings which combine literal strings and
shell variable values. Except in the case of characters that have special meaning in the
shell (e.g., spaces, dollar signs), quoting in strings is not necessary. However, quoting does
avoid errors with strings used as operands.

The first two examples demonstrate the wrong and correct methods of concatenating a shell
variable value and an alphanumeric string. Since foo5 is a valid variable name, $foo5 is
syntactically correct even though the variable has no value. By surrounding the name with
braces, the shell interpreter expands the value $foo, and concatenates the string “5” to it.

In the third example, the value $bar is concatenated to the string “x.” In this case, the
braces are not needed.

The fourth example shows that single quotes prevent expansion of shell variable values.

The fifth example shows equivalent combinations of shell variable values and literal strings.

Although the sixth example is contrived, it shows that any of the constructed strings are
valid arguments to commands

AFRL MSRC C Shell (csh) Programming Tutorial 7

Logical expressions and file inquiry

The if and while constructs use the results of conditional
expressions or integer values to make decisions.

The logical operators are similar to their C counterparts. In
addition, the file inquiry operators determine properties of their
file arguments.

As in the C programming language, not-zero is true, and 0 is false. This convention is the
opposite of the Unix return values 0 (success/true) and not-zero (failure/false).

File inquiry and logical operators

-f value true if value is an ordinary file

-d value true if value is a directory

-z value true if file value is empty

-r value true if $USER has read-permission on
file value

-w value true if $USER has write-permission on
file value

-x value true if $USER has execute-permission
on file value

==, != string comparison operators

==, !=, <, <=, >, >= integer comparison operators

! negation operator

&&, || logical AND, OR

(,) group expressions to increase precedence

AFRL MSRC C Shell (csh) Programming Tutorial 8

Examples:

1. “$LIBPATH” == “”
2. -x /bar/RECORD.USAGE
3. “$LD LIBRARY PATH” != “”
4. $# > 0
5. ! -d ./foo

Explanation:

1. true if $LIBPATH is the empty string (“”)
2. true if /bar/RECORD.USAGE is an executable file
3. true if $LD LIBRARY PATH is not the empty string

(“”)
4. true if the number of command-line arguments is greater

than zero (0)
5. true if ./foo is not a directory

AFRL MSRC C Shell (csh) Programming Tutorial 9

Making choices (if and switch):

if (expression) command

if (expression) then
command-1
[...
command-N]

[else if (expression) then
command-1
[...
command-N]]

[else
command-1
[...
command-N]]

endif

The if construct sequentially evaluates each expression until
1) one evaluates as true, 2) the else clause is reached, or 3)
endif (end of the construct) is reached. For cases 1) and 2), all
commands are executed up to the next else if, else, or endif.

AFRL MSRC C Shell (csh) Programming Tutorial 10

In the example, the tty command checks if the standard input stream is connected to a
terminal without generating output. The return value $status is checked (0 is success/true
in Unix, but false in C), and the erase character is set to control-H, or backspace, if the
conditional expression is true.

Example:

This sets the erase character to backspace only when connected
to a terminal; stty will give an error when the stdin is not a
terminal. tty tests stdin.

tty -s
if (! $status) then

stty erase ´∧H´
endif

This snippet is useful in .login file which is executed at the beginning of a login session;
the clause prevents execution for non-interactive logins such as batch processing.

AFRL MSRC C Shell (csh) Programming Tutorial 11

switch (value)
case case-a1:
[...
case case-aN:]

action-1
[...
action-N]
breaksw

[...
case case-N1:
[...
case case-NN:]

command-1
[...
command-N]
breaksw]

[default:
command-1
[...
command-N]
breaksw]

endsw

Note: value is typically the value of a variable ($name) or the
output of a command (`command`) where the grave (‘`’) turns
the output of a command into a string. breaksw denotes the
end of the actions for the group of cases.

value is compared to all of the case-* terms; if a match is found,
the commands up to the terminating breaksw are executed. If
no match is found, the default default is matched, if it exists,
and the associated commands are executed.

AFRL MSRC C Shell (csh) Programming Tutorial 12

The command ping gives a simple test of connectivity to a remote machine. The
command rsh allows command execution on remote machines if user $USER has login
access. However, different operating systems have differing full paths to these utilities.
The following example is one method to simplify this process for use later in a script.

Example:

Sets shell variables with full pathnames for ping and rsh

set OS = `uname -s`

switch ($OS)
case IRIX*:

set PING = /usr/etc/ping
set RSH = /usr/bsd/rsh
breaksw

case OSF1*:
case SunOS*:

set PING = /usr/sbin/ping
set RSH = /usr/bin/rsh
breaksw

case Linux*:
set PING = /bin/ping
set RSH = /usr/bin/rsh
breaksw

default:
echo “Unknown operating system”
exit 1
breaksw

endsw

AFRL MSRC C Shell (csh) Programming Tutorial 13

The output of the uname command gives the operating system name; this is assigned to the
shell variable OS. This switch construct selects the values to assign to the shell variables
PING and RSH for the operating systems that it recognizes. The value $OS is compared
to the various case strings; the “*” in all the cases matches any string. The “default” case
matches any case not previously matched.

By assigning values to shell variables, the commands that follow this switch construct can
use the values of the shell variables as opposed to the actual full pathnames. Thus, the
same script can function on multiple machines minimizing maintenance errors.

As with other programming languages, switch constructs can be the body of if constructs,
and vice versa.

The following snippet first checks whether the value $CPU is the empty string.

If the value is the empty string, the output of the hostname command is compared to the
cases. Here both the “*”, which matches zero or more characters, and the range operator
(here denoting a digit) are used in the patterns to match. If a pattern matches, CPU
is assigned the associated value. If no pattern matches, a message is printed to standard
output, and the script exits.

AFRL MSRC C Shell (csh) Programming Tutorial 14

Example:

A method to set the CPU environment variable for known
machines

if (“$CPU” == “”) then
switch (`hostname`)

case aaa-[0-9]*:
case bbb-[0-9]*:

setenv CPU alpha
breaksw

case ccc-[0-9]*:
setenv CPU beta
breaksw

case ddd:
setenv CPU gamma
breaksw

default:
echo `hostname` “does not define CPU environment \

variable”

echo “Contact user@host.domain about this \
problem”

exit 1
breaksw

endsw
endif

AFRL MSRC C Shell (csh) Programming Tutorial 15

Positional parameters

At a basic level, the positional parameter values $1 . . . $9,
$argv, and $*, and their respective count $# are the references
to the command-line arguments of the script; $0 is the name of
command that invoked the script. The initial nine positional
parameter values (where applicable) are referenced by the
values $1 . . . $9.

If more than nine (9) positional parameters exist, the remaining
positional parameters can be moved into the $1 ... $9 values
using the shift command with no argument; with a variable
list name as an argument, the elements of the variable list are
shifted. In either case, the first element is lost, and all elements
shift to the left (lower index) by one position.

Alternatively, $argv[k] references the kth argument where k
ranges from 1 to $# (or $#argv).

As with other variable lists, the elements of argv can be referenced as $argv[num] where
num ranges from 1 to $# (or $#argv).

To illustrate the use of the shift command, the list of positional parameter values is
considered to be a space-separated list with the lowest index on the left. The command

shift [variable-name]

will shift all the elements in the list variable-name (or the positional parameters if no
argument is present) by one position to the left, losing the value to the left of the first
position. In addition, $# is decremented by one as well.

AFRL MSRC C Shell (csh) Programming Tutorial 16

This example demonstrates the passing of command-line arguments to another command.
This snippet could be used in a wrapper script where the setup operations or logging
might be incorporated in addition to executing the command. As these operations would
generally execute in a subshell, the calling shell environment would not be affected.

Example:

Passing the command-line arguments to another command.

command=`basename $0` # Gets name of command

/software/$CPU/bin/$command $*

The assignment of command uses the basename command to get the name of the script
as it was called, less any directory path information. The gravé quotes (``) change the
output of the command into a string for the assignment.

In a wrapper script, the value $0 would be the symbolic link associated with the actual
script, e.g., the link snafu created by

ln -s wrapper.sh snafu

would start the executable (/software/$CPU/bin/snafu when invoked. This allows
one script to create a consistent operating environment for multiple related executables.

AFRL MSRC C Shell (csh) Programming Tutorial 17

Looping: foreach, while

foreach name (value-1 . . . value-N)
command-1

...
command-N

end

For each iteration of the loop, variable name is successively
assigned value-1 through value-N, and the commands in the
body are executed.

while (expression)
command-1
...
command-N
end

The while construct loops over the commands between the
while and end as long as expression is true.

AFRL MSRC C Shell (csh) Programming Tutorial 18

Example:

This example creates links which associate commands with a
wrapper script.

cd /base $CPU

foreach file (`cd /software/$CPU/bin ; ls`)
if (! -f $file) then

ln -s /software/scripts/app.sh $file
endif

end

After changing to the directory for the links, the foreach loop iterates over the names of
executable files; by changing to the directory before executing the directory listing, only
the filenames are output. Note: the commands within the gravé quotes are executed in a
subshell, and do not directly affect the current process.

To avoid error messages from ln, an if construct checks that the link does not already
exist. The wrapper script (called /software/scripts/app.sh) is linked with the name of
an executable binary ($file).

AFRL MSRC C Shell (csh) Programming Tutorial 19

Example:

Changes the uppercase letters in the names of a group of files
to lowercase

foreach file (`ls`)
set new file = `echo $file | tr ´[A-Z]´ ´[a-z]´`

if (“$new file” != “$file”) then
mv $file $new file

endif
end

$file successively takes values of the filenames in the current directory. new file is assigned
the value $file with all the uppercase letters changed to their lowercase equivalent; as tr
only works on streams, the value $file is echo’ed and piped to tr.

The values $new file and $file are compared. If they are not equal, the file $file is
renamed $new file. Both $file and $new file are quoted as a precaution against empty-
string values.

This example demonstrates the while loop which terminates when its condition returns
false (not 0).

Example:

Iteratively operating on positional parameters

while ($# > 0)
echo $1
shift

end

$# is the number of positional parameters, so the loop continues as long as it is non-zero.
For each loop iteration, the first parameter ($1) is output, and each parameter is moved
one position down with $1 being discarded. $# is updated with each shift command.

Although this loop only prints out each parameter, the action could be more involved such
as moving files or processing terms.

AFRL MSRC C Shell (csh) Programming Tutorial 20

The outer loop continues until the value $STATE is 0 (success in Unix).

Example:

Getting a successful file transfer

set STATE = -1

while ($STATE != 0)
rcp foo.dat host:/home/user
set STATE = $status

if ($STATE != 0) then
kinit -l 10h

while ($status != 0)
kinit -l 10h

end
endif

end

The outer loop continues until the value $STATE is 0. Note: the value $STATE is
initialized to be not 0.

The body of the outer loop: 1) tries to copy a file to a remote host, 2) assigns the return
value of the copy command to STATE, and 3) performs additional processing if the copy
failed (value $STATE is not 0).

The assumption to continue processing is that the remote copy command rcp should only
fail in a recoverable way: if there are no valid credentials (loss of network connectivity is not
a recoverable error). Thus, when a failure occurs, the loop executes until the credentials
have been established.

Note: the expressions “$name != 0” could also be written “$name” as not-zero is “true.”

AFRL MSRC C Shell (csh) Programming Tutorial 21

eval command

When performing the same operation on a collection of
variables, it is convenient to use the looping structures that
work when the value of a variable is allowed to change. The eval
command evaluates its argument, then executes the expanded
string as a command.

Example: sets the value of the variable to its name

foreach match (rusage select test)
eval ´set ´$match´ = $match´

end

This apparently trivial example demonstrates the utility of the eval command. The value
of $match is successively set to three values. On the left-hand-side of the assignment, the
unquoted string expands to the value $match. On the right-hand-side of the assignment,
the single quotes prevent expansion of $match. So, before applying eval, the argument
would look like (for $match being rusage):

´set ´rusage´ = $match´

which is clearly an illegal form. eval removes one level of quoting, and evaluates the result.
Thus the command to evaluate would be:

set rusage = $match

From this trivial example, other sources might be used to assign $match. As this is the
variable name to be assigned, a similar eval statement would assign a changing variable
name to a string.

The variation

eval ´set ´${match}1´ = $´$match

would expand to the command

set rusage1 = $rusage

allowing one to assign other variables via the loop.

AFRL MSRC C Shell (csh) Programming Tutorial 22

Doing math

For integer math, there are built in commands as well as the
expr command. Note: the multiplication operator is \∗, not
*, as the latter is special to all shells. expr has additional
operators besides the usual math operators.

The expr command takes as its arguments the expression to be evaluated where the
operands and operators are space-separated. Although other operators are noted in the
man pages, for this discussion, only the mathematical operators +, -, \∗, /, and % are
considered.

This example tests the scalability of an MPI program. The program foo is assumed to be
an MPI executable that can be started by the command mpirun.

Example: scaling test

set count = 1

while ($count <= 128)
mpirun -np $count foo
set count = `expr $count \∗ 2`

end

The variable count stores the processor count, and begins at 1. The loop continues while
the value $count is less than or equal to 128.

For each loop iteration, foo is run on $count processors, then count is assigned the value
of twice $count. As seen in previous examples, the gravé quotes (`) change a command’s
output into a string, and do not prevent expansion of shell variables.

AFRL MSRC C Shell (csh) Programming Tutorial 23

Built-in math

The format

@ t variable-name t operator t expression

where spaces between the ‘@’ and variable-name, and between
variable-name and operator are required; spaces are
recommended for clarity. operator can be the usual C
assignment operators (=, +=, -=, *=, /=) as well as post-
increment/decrement (++, −−).

expression can be a variable value or integer expression.

Example: scaling test (built-in math)

@ count = 1

while ($count <= 128)
mpirun -np $count foo
@ count *= 2

end

AFRL MSRC C Shell (csh) Programming Tutorial 24

continue, break

It is convenient to avoid executing all the commands in a loop
if some condition is met. continue stops the current iteration
of a loop and moves to the next one. break terminates the
current loop.

Example:

Changes the uppercase letters in the names of a group of files
to lowercase (using continue)

foreach file (`ls`)
set new file = `echo $file | tr ´[A-Z]´ ´[a-z]´`

if (“$new file” == “$file”) then
continue

endif

mv $file $new file
end

$file successively takes values of the filenames in the current directory. new file is assigned
the value of $file with all the uppercase letters changed to their lowercase equivalent; as
tr only works on streams, the value of $file is echo’ed and piped to tr.

The values $file and $new file are compared. If they match, no change is necessary, and
the continue statement returns control to the top of the loop. Otherwise, the filename
changes to $new file. This is a rewriting of a previous example to illustrate the use of
the continue statement.

AFRL MSRC C Shell (csh) Programming Tutorial 25

find command

The find command is useful for locating files with specific
attributes. By default, find generates a list of files that match
the search criterion. The -exec option specifies a command to
execute where “{}” denotes the current match; the argument
to -exec must be terminated by “\;”.

The reader should reference the man pages for find.

Useful find options:

-name filename-specification finds filenames matching the
specification

-perm permission-specification finds files with matching
permissions

-ctime number-of-days
-mtime number-of-days
-atime number-of-days

finds files with creation,
modification, access times in
number-of-days days

-type type-specification finds files of the specified type

-exec command \; executes command with “{}” (the
current match) as an argument.

! option negates its argument

\(, \) groups options

option-1 -a option-2 both specifications must be
true for match

option-1 -o option-2 either specification must be
true for match

AFRL MSRC C Shell (csh) Programming Tutorial 26

find . -name ´*.c´ # Finds C source files

Changes permissions to allow group/world read access
find /software/ -perm 0600 -exec chmod go+r {} \;

The first example locates files that end in ‘.c.’ As ‘*’ is special to the shell, it is quoted so
that the wildcard is not expanded, but passed to find as a parameter.

The second example finds files in the directory /software that have only user read-write
permissions. The identified files then have group and other read permissions added. In
the chmod command associated with the -exec option, {} refers to the found file, and \;
indicates the end of the command.

In-line input redirection or here documents

Although the stdin for a command can be redirected from a
file, it is useful in a script to have the data in the script as
opposed to depending on a file. “Here” documents provide
this functionality.

command <<flag
line-1

...
line-N
flag

All the lines up to the line containing only flag are through stdin
for command. Note: no spaces between “<<” and flag. All
shell variables are expanded by default unless flag is preceded
by a “\”.

Instead of reading from standard input, this example uses a “here” document for input. An
advantage to this is that it is does not require the user to interactively enter the message,
and allows a combination of static data with dynamic content (this could be done in a
loop over valid users).

AFRL MSRC C Shell (csh) Programming Tutorial 27

Any command that reads from the standard input stream can potentially have a “here”
document as an alternative to an input file.

Example: mails notice to user

if (! -f $HOME/.login) then
mail -s “Missing $HOME/.login” $USER <<EOF

Dear user $USER:

Alert: the file $HOME/.login is missing.

System administrator
EOF

This example checks for a login startup file, and mails a note to the user if the file does
not exist.

source command

The source command executes its argument, a valid shell script,
in the current shell. Thus, unlike executing the shell script by
itself, it effects changes in the current shell as opposed to run-
ning in a child shell. The source command is useful for
modifying the current process’s environment or adding aliases.

AFRL MSRC C Shell (csh) Programming Tutorial 28

exit command

exit
exit(expression)

The exit command terminates the current shell script at the
point at which it is executed rather than allowing it to
complete. If an optional argument expression is included, it
returns an exit status of the value of expression; otherwise, it
returns the exit status of the last command executed before
exit. exit is useful for aborting the shell script if problems
occur.

stream manipulation

foo | more # stdout piped into pager
foo |& more # stdout and stderr piped into pager

bar >foo # stdout redirected to a file
bar > &foo # stdout and stderr redirected to a file

The first example demonstrates piping the standard out stream, and the standard out and
error streams together. In the first case, only standard out would be connected by the
pipe to the less command. In the second case both streams are connected to the standard
input of the command.

The second example demonstrates the similar combinations for file redirection.

AFRL MSRC C Shell (csh) Programming Tutorial 29

